Skip to content Skip to sidebar Skip to footer

Source: Analytics India Magazine as of 21-05-2020

By supplementing human efforts when it comes to interpreting the outcome and incorporating it to make appropriate decisions, it can play a critical role in preventing outbreaks or identifying potential hotspots. What is more, allowing AI to identify its own patterns with unsupervised ML can be leveraged to put a spotlight on developments one may have otherwise missed. 

ALSO READ: The Future Of Healthcare & AI Impact

Prevention Through Prediction

Many companies today are aggressively mining data to develop models to create early warning systems. Even if they are helpful at merely predicting the course of an epidemic, it will still help authorities plan better to curb its spread. While some, like BlueDot, use natural language processing (NLP) algorithms to keep a track of online news or social media feeds, others like Nanox use AI-powered digital X-ray systems to make an early diagnosis of the disease before it develops into a pandemicMany of these use existing clinical studies to create these solutions. Many researchers also pair their observations with AI and Big Data to develop tools that validate their assumptions. One case in point is a tool built by a researcher from the Cary Institute.

Dr Barbara A Han proposed an early warning system to forecast outbreaks like Covid-19 before they can strike on a massive scale. Using global datasets on diseases that pass from an animal to humans, Han used AI to map risk-prone areas. The key here is the breadth and depth of the data on zoonotic diseases since the model needs to make predictions on a global scale. In other words, it needs to accurately forecast disease across the world and not just in a few regions, and hence, the data needs to be expansive. In collaboration with IBM Research’s Science for Social Good initiative, Han used AI to curate this data to identify primate species that are likely to harbour the Zika virus and potentially transmit it to humans. This was accomplished by melding two modelling techniques to make up for any gaps in the data collected. It also highlighted potential hosts and even geographic hotspots in South America.  As indicated above, the map shows the geographic ranges of primates that are undetected Zika reservoirs, colour-coded according to percentiles of their predicted probabilities. Thus, Han’s ML model helped highlight high-risk species that hosted Zika and also shed a spotlight on the hotspots that are vulnerable to the outbreak.

Data Challenges In Effectively Harnessing AI

While promising, these models depend on a vital resource, which is widely variable — data. Not only is it difficult to verify the veracity of publicly available datasets, but these AI-driven approaches also become less accurate as cases arise. As indicated in this report, data used to build ML models to combat a pandemic like Covid-19 is largely reliant on news sources, and social media feeds. Official reports help, but these too go through several iterations since the situation changes daily and confusion still prevails. Training ML algorithms with inconsistent data will not only be inadequate but perhaps even dangerous since the outcome should not be used to make critical decisions. However, this can change if crucial data was made open to the public for analysis, or be made available to researchers and entrepreneurs working on a solution.  This calls for an uncomfortable — yet important — conversation on privacy and the ethical implications of violating it as one of the possible trade-offs to prevent the outbreak of a deadly disease. It also demands increased collaboration between countries and new policy initiatives and regulations to possibly arrive at a common international standard.


Combining human intelligence with the power of AI and Big Data will open more avenues in the fight against a future pandemic. While the current outbreak is testing the potential of emerging technologies to develop a cure, it is just as important to direct efforts towards predicting the emergence of a contagious disease and preventing it from spiralling into a pandemicGiven that AI interventions in this space are few and far between, a healthy scepticism is good to adopt before diving into its possibilities. However, AI has played a crucial role in healthcare before, and these efforts should be pursued on the strength of this belief.

Show CommentsClose Comments

Leave a comment

News ORS © 2020. All Rights Reserved.